organic compounds

Acta Crystallographica Section C Crystal Structure Communications ISSN 0108-2701

4-Bromo-2-(hydroxymethyl)phenol: helical hydrogen bonding, $R_2^2(12)$ rings and C—H··· π interactions

Philip J. Cox

School of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, Scotland Correspondence e-mail: p.j.cox@rgu.ac.uk

Received 1 May 2003 Accepted 18 June 2003 Online 9 August 2003

Apart from the O and H atoms of the hydroxymethyl group, molecules of the title compound, $C_7H_7BrO_2$, are essentially planar. Both O atoms act as hydrogen-bond donors and acceptors, resulting in helical hydrogen bonding in the direction of the *b* axis and the formation of $R_2^2(12)$ rings. Weaker $C-H\cdots\pi$ interactions are also present.

Comment

Many bromophenols have been detected in blood (Olsen *et al.*, 2002) and several antibacterial bromophenols are found in marine algae (Flodin & Whitfield, 1999). 4-Bromo-2-(hydroxymethyl)phenol (also known as 5-bromo-2-hydroxy-benzyl alcohol or bromosaligenin) is an anti-inflammatory agent (Merck, 1989) and spasmolytic (Negwer, 2000). When two OH groups are present in a molecule, a variety of hydrogen-bonding patterns are possible (Brock, 2002), so the main interest in the solid-state structure of the title compound, (I), is the determination of the hydrogen-bonding motifs.

A view of the molecule is shown in Fig. 1. The out-of-plane O2 atom is 1.330 (3) Å from the mean plane of the remaining non-H atoms in the molecule, as indicated by the C1-C2-C7-O2 torsion angle [72.5 (3)°; Table 1]. There is no intramolecular hydrogen bonding between the two O atoms.

There are two intermolecular $O-H\cdots O$ hydrogen bonds (Table 2) and, in both cases, the intermolecular $O\cdots O$ separations [2.642 (3) and 2.781 (3) Å] are shorter than the corresponding intramolecular separation [3.086 (3) Å]. The hydrogen bonding is maximized by both O atoms acting as hydrogen-bond donors and acceptors, which results in an unusual three-dimensional pattern of hydrogen bonds. Fig. 2

Figure 1

A view of the molecule of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

shows the continuous corkscrew or helical arrangement of hydrogen bonds along the *b* axis, with each helix involving all four symmetry-related molecules in the unit cell. The formation of the helices depends on the intermolecular symmetries [*i.e.* $(x, -y - \frac{1}{2}, z + \frac{1}{2})$ and (1 - x, -y, 2 - z)] of the hydrogen bonds, and both left- (L) and right-handed (R) helices are present in the lattice. The pitch of the helix equates to the length of the *b* axis [5.3329 (2) Å], and overall each molecule

A view of the molecular packing of (I), showing the formation of left- (L) and right-handed (R) helical hydrogen bonds, and also $R_2^2(12)$ rings.

Figure 3

The formation of an $R_2^2(12)$ ring through intermolecular hydrogen bonding in (I). Atoms marked with an asterisk (*) are at the symmetry position (1 - x, -y, 2 - z).

Figure 4 Part of the crystal structure of (I), showing the $C-H\cdots\pi$ interactions.

is linked to three other molecules by four classical hydrogen bonds. Fig. 3 shows that the hydrogen bonding also produces an $R_2^2(12)$ ring between two molecules. This dimer formation, also shown in Fig. 2, is across an inversion centre. In addition, there are weak intermolecular $C-H\cdots\pi$ interactions (Desiraju & Steiner, 1999), as shown in Fig. 4 and Table 2, but there is no evidence of any aromatic $\pi-\pi$ interactions. The shortest Br \cdots Br intermolecular separation is 3.7173 (1) Å, which is comparable to the sum of the van der Waals radii (3.70 Å; Bondi, 1964). The crystal structure of the related saligenin ($C_7H_8O_2$) molecule is also known (Zorkii *et al.*, 1985), but no atomic coordinates are available.

Experimental

The title compound was purchased from Sigma and recrystallized from diethyl ether.

Crystal data

er ystat aata	
$C_7H_7BrO_2$	$D_x = 1.868 \text{ Mg m}^{-3}$
$M_r = 203.04$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 3029
a = 16.3632(5) Å	reflections
b = 5.3329 (2) Å	$\theta = 2.9-27.5^{\circ}$
c = 8.4108 (3) Å	$\mu = 5.62 \text{ mm}^{-1}$
$\beta = 100.364 \ (2)^{\circ}$	T = 120 (2) K
V = 721.98 (4) Å ³	Rod, colourless
Z = 4	$0.40 \times 0.24 \times 0.18 \text{ mm}$
Data collection	
Nonius KappaCCD area-detector	1614 independent reflections
diffractometer	1430 reflections with $I > 2\sigma(I)$
φ and ω scans to fill Ewald sphere	$R_{\rm int} = 0.067$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(SORTAV; Blessing, 1995, 1997)	$h = -20 \rightarrow 20$
$T_{\min} = 0.212, \ T_{\max} = 0.431$	$k = -6 \rightarrow 6$
5019 measured reflections	$l = -10 \rightarrow 10$
Refinement	
<i>d</i>	

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.042$ $wR(F^2) = 0.114$ S = 1.041614 reflections 119 parameters All H-atom parameters refined $w = \frac{1}{[\sigma^2(F_o^2) + (0.074P)^2 + 0.392P]}$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\text{max}} = 0.001$

 $\Delta \rho_{\text{max}} = 1.17 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -1.39 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Br1-C4	1.897 (3)	O2-C7	1.441 (3)
O1-C1	1.369 (3)	C2-C7	1.494 (4)
C3 - C2 - C7 - O2	-106.5 (3)	C1-C2-C7-O2	72.5 (3)

Table 2

Hydrogen-bonding geometry (Å, °).

Cg is the centre of gravity of the aryl ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$01-H1\cdots O2^{i}$ $02-H2\cdots O1^{ii}$ $C3-H3\cdots Cg^{iii}$ $C6-H6\cdots Cg^{iv}$	0.88 (4) 0.77 (3) 0.97 (3) 0.88 (4)	1.81 (4) 2.04 (3) 2.97 (3) 2.97 (3)	2.642 (3) 2.781 (3) 3.768 (3) 3.717 (3)	159 (3) 162 (4) 141 (3) 144 (3)

Symmetry codes: (i) $x, -\frac{1}{2} - y, \frac{1}{2} + z$; (ii) 1 - x, -y, 2 - z; (iii) $x, -\frac{1}{2} - y, z - \frac{3}{2}$; (iv) $x, -\frac{3}{2} - y, z - \frac{1}{2}$.

H atoms were refined freely, with isotropic displacement parameters. The highest residual electron density in the final difference map was associated with atom Br1.

Data collection, cell refinement and data reduction: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT* (Hooft, 1998); structure solution: *SIR*97 (Altomare *et al.*, 1999); structure refinement: *SHELXL*97 (Sheldrick, 1998); molecular graphics: *ORTEP*-3 (Farrugia, 1997).

The author thanks the EPSRC for the use of the National Crystallographic Service at Southampton University (X-ray data collection) and for the use of the Chemical Database Service at Daresbury Laboratory (Fletcher *et al.*, 1996).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1532). Services for accessing these data are described at the back of the journal.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
 Blessing, R. H. (1995). Acta Cryst. A51, 33–38.
- Blessing, R. H. (1995). Acta Cryst. AS1, 55–56. Blessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.
- Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
- Brock, C. P. (2002). Acta Cryst. B58, 1025–1031.
- Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond In Structural Chemistry and Biology. New York: Oxford University Press.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Fletcher, D. A., McMeeking, R. F. & Parkin, D. (1996). J. Chem. Inf. Comput. Sci. 36, 746–749.
- Flodin, C. & Whitfield, F. B. (1999). Water Sci. Technol. 40, 53-58.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Merck (1989). In *Merck Index*, 11th ed. Rahway, New Jersey: Merck and Co. Inc.
- Negwer, M. (2000). In Organic Chemical Drugs and Their Synonyms, 7th ed. New York: VCH.
- Olsen, C. M., Meussen-Elholm, E. T. M., Holme, J. A. & Hongslo, J. K. (2002). *Toxicol. Lett.* **129**, 55–63.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1998). *SHELXL*97. Release 97-2. University of Göttingen, Germany.
- Zorkii, P. M., Kushnikov, Yu. A., Bel'skii, V. K., Zavodnik, V. E. & Zasurskaya, L. A. (1985). Dokl. Akad. Nauk SSSR, 283, 408.